1. **SCOPE**

1.1 This test method is a guide of how to properly construct a control strip during the placement of plant produced asphalt pavement. Control strips are necessary to determine an optimum roller pattern and to establish a proper target density.

2. **REFERENCED DOCUMENTS**

2.1 SC Test Method
SC-T-101

2.2 Forms
SCDOT Electronic Form
400.02
400.11

3. **SUMMARY OF TEST METHOD**

3.1 This test method is a guide to help determine the number of passes for each phase of rolling to achieve contract density requirements. Use the average of 10 random density readings to determine the compaction effort necessary to achieve the target density of HMA.

4. **SIGNIFICANCE AND USE**

4.1 To determine the target density of plant produced asphalt that will be used to monitor the compaction effort throughout the construction of plant produced asphalt pavements. As work progresses, construct additional control strips if there are changes to any of the following: underlying support, type of asphalt mix, the thickness of the mat, the paving or rolling equipment, any other elements that might affect the final density achieved, or when density requirements are not being met.

5. **APPARATUS**

5.1 The Contractor selects the equipment for rolling the plant produced asphalt in the control strip so long as proper density and a smooth riding pavement are obtained. The density gauge should be capable of measuring the density of asphalt concrete materials and is to be operated by a trained and certified operator. If an electronic impedance type gauge is used, ensure that it is approved by the Asphalt Materials Engineer (AME).
6. TEST SPECIMEN

6.1 Minimum of 900 ft. of freshly paved asphalt roadway.

7. PROCEDURE

7.1 General

7.1.1 Ensure that the control strip is at least 900 feet in length, one paving width wide, and the same thickness as required in the construction documents. This 900 ft section is divided further into three sections. The first 300 ft allows the equipment to level out, the second section from 300-600 ft establishes the roller pattern, and the third section is required to determine target densities. Requirements for each of these sections is described below.

7.1.2 Ensure that the material used for construction of the control strip is representative of the plant produced asphalt in the subsequent paving operation. Ensure that the delivery temperature is suitable and consistent with the expected temperature for the remainder of the work. Temperature is required to meet subsection 401.4.17 of the Standard Specifications.

7.1.3 Construct the control strip using the same paving and rolling equipment that will be used for the subsequent paving operation.

7.2 Optimum Roller Pattern

7.2.1 Use the optimum roller pattern described herein as a guide to achieve consistent compaction. The contractor has the authority to vary the roller pattern as the paving operation progresses in order to achieve density requirements. If the roller pattern varies more than two passes per phase from the original roller pattern, the contractor must establish a new roller pattern.

7.2.2 The first 300 ft. section is intended to let the asphalt plant level out at the beginning of production to ensure that subsequent target densities determined are representative of the entire project. The Contractor is required to roll a 3-3-3 roller pattern in this section and monitor densities. The densities are for informational purposes only with the intent they only be used to determine if the road in question has the necessary substructure to resist subsequent compaction efforts.

7.2.3 In the second 300 ft section, break the 300 foot section into three sections approximately 100 feet each for each phase of rolling. Place the gauge on the freshly compacted mat and mark around the gauge with a lumber crayon. Mark two more additional locations approximately 10 feet apart within the 100 foot section for the breakdown roller. Ensure that the readings are at least 3 feet from the pavement edge. If more than three rollers are used, use 100 feet additional in the 300 foot section, if less than three rollers are used, use 100 feet less in the 300 foot section to establish roller pattern.
7.2.4 Take density gauge readings for the 3 selected locations and record them on SCDOT Form 400.02

Note – Use a zero offset on the gauge when obtaining control strip density readings.

<table>
<thead>
<tr>
<th>Paving Direction</th>
<th>0-300’</th>
<th>300’-400’</th>
<th>400’-500’</th>
<th>500’-600’</th>
<th>600’-900’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform 3-3-3 Roller Pattern</td>
<td>Mark around gauge and measure gauge readings in three locations in middle of each 100 foot section</td>
<td>A-3-3 Breakdown passes to be determined. (A) Roll 3 passes with Intermediate and finish rollers</td>
<td>A-B-3 Intermediate passes to be determined. (B) Breakdown passes (A) determined in previous section Roll 3 passes with finish roller.</td>
<td>A-B-C Finish passes to be determined. (C) Breakdown (A) and Intermediate passes (B) determined in previous sections.</td>
<td>Obtain 12 Readings for Target</td>
</tr>
</tbody>
</table>

Note: (A) represents # of breakdown passes, (B) represents # of intermediate passes (C) represents # of finish passes

7.2.5 Obtain successive density gauge readings and surface temperature at the exact same locations after each pass of the roller. Record density reading and temperature readings on SCDOT Form 400.02. Continue rolling until the maximum attainable density is achieved, as determined by successive readings showing an average decrease in density or a maximum of four passes in each phase whichever comes first. A pass of a roller is defined as rolling over a particular area one time. In the event that more than four passes are needed, contact the AME immediately for an investigation of contractor’s compaction equipment and established roller pattern.

Note – Pneumatic Rubber Tire rollers do not have a maximum limit for number of passes.

7.2.6 Allow the breakdown roller to proceed to the next 100 foot section and apply the proper roller pattern as established in the first 100 foot section. Intermediate and Finish rollers must apply a minimum of three passes to the first 100 foot section to ensure proper compaction effort until roller pattern has been established. Repeat the procedure as outlined in 7.2.2, 7.2.3, and 7.2.4 for the intermediate and finish phases of rolling, moving up one 100 foot section after each phase of rolling has been established. Ensure the density gauge readings are taken on the same marked location for each section. Complete intermediate rolling while the mix temperature is above 175°F, unless otherwise approved in writing by the AME.

7.2.7 Establish the optimum roller pattern by eliminating subsequent passes of each roller that do not contribute to achieving the maximum attainable density as described in 7.2.4. Record this roller pattern and use it throughout the subsequent paving operation or until conditions require a new control strip to be constructed.

In the event that an additional control strip is deemed necessary in the middle of a day’s production, utilize the latest control strip for the target density. Obtain ten acceptance gauge readings for the entire length of roadway paved for that day’s production according to SC-T-101.
7.3 Target Density

7.3.1 After all rolling of the control strip has been completed, make 12 random density gauge readings in the control strip area in the last 300 ft section. Discard the highest and lowest. Average these readings and use this average control strip density as the target density for subsequent paving operation. On projects where a density is used for final mixture acceptance, SCDOT will calculate core and gauge locations using SC-T-101 from the end of the target strip. The initial 900 feet of paving will not be used for calculating core locations or gauge shots used for final mixture acceptance.

7.3.2 The Contractor is responsible for achieving density requirements in the contract documents. The Contractor will inform the RCE and the AME when the final density measurement continues to fail to meet density requirements. The RCE needs to investigate along with the AME to determine if there is not enough sub-structure support to achieve compaction efforts. The contractor must provide documentation that suitable equipment has been used and proper roller pattern procedures were followed in an attempt to achieve the maximum attainable density. The RCE and the AME will notify and give recommendations to the DCE based on their observations. The DCE will review this documentation and determine whether the density of the mix can not be met under the current contract specifications. The use of a lower specification limit in the contract specifications for determining density of roadway cores or a density gauge may be used for final mixture acceptance.

8. CALCULATIONS

8.1 Example 1:

<table>
<thead>
<tr>
<th>Roller # Passes</th>
<th>Site # 1 @ 340</th>
<th>Site # 2 @ 350</th>
<th>Site # 3 @ 360</th>
<th>Average</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibratory Steel Pass 1</td>
<td>133.0</td>
<td>133.6</td>
<td>134.0</td>
<td>133.5</td>
<td></td>
</tr>
<tr>
<td>Vibratory Steel Pass 2</td>
<td>133.3</td>
<td>135.1</td>
<td>135.0</td>
<td>134.5</td>
<td>Use</td>
</tr>
<tr>
<td>Vibratory Steel Pass 3</td>
<td>132.9</td>
<td>135.0</td>
<td>135.0</td>
<td>134.3</td>
<td>Broke</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roller # Passes</th>
<th>Site # 1 @ 440</th>
<th>Site # 2 @ 450</th>
<th>Site # 3 @ 460</th>
<th>Average</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic Pass 1</td>
<td>135.3</td>
<td>135.3</td>
<td>136.1</td>
<td>135.6</td>
<td></td>
</tr>
<tr>
<td>Pneumatic Pass 2</td>
<td>135.5</td>
<td>135.2</td>
<td>136.4</td>
<td>135.7</td>
<td></td>
</tr>
<tr>
<td>Pneumatic Pass 3</td>
<td>134.9</td>
<td>136.3</td>
<td>136.8</td>
<td>136.0</td>
<td>Use</td>
</tr>
<tr>
<td>Pneumatic Pass 4</td>
<td>136.0</td>
<td>136.1</td>
<td>135.6</td>
<td>135.9</td>
<td>Broke*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roller # Passes</th>
<th>Site # 1 @ 540</th>
<th>Site # 2 @ 550</th>
<th>Site # 3 @ 560</th>
<th>Average</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Steel Pass 1</td>
<td>138.0</td>
<td>139.0</td>
<td>138.1</td>
<td>138.4</td>
<td></td>
</tr>
<tr>
<td>Static Steel Pass 2</td>
<td>138.1</td>
<td>140.0</td>
<td>139.8</td>
<td>139.3</td>
<td>Use</td>
</tr>
</tbody>
</table>
* - When a Pneumatic Roller is utilized and it is up to the contractor to use the
determined number of passes or more passes to order to achieve density and keep
tires on pneumatic roller warm.

Established Roller Pattern in Example 1: 2-3-2
SCDOT Form No. 400.02 must be used to document contractor’s roller pattern

8.2 Example 2: Target Density

<table>
<thead>
<tr>
<th>Final 600-900 foot section (12 random readings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>139.3</td>
</tr>
<tr>
<td>138.5</td>
</tr>
</tbody>
</table>

Discard the highest and the lowest readings: 140.1 & 135.2
Established Target Density (average of remaining 10 gauge readings above) = 138.3 psy

Average Daily Random Readings (SC-T-101) = 137.6 psy
Percentage of Target Density (% Compaction) = 137.6/138.3 * 100 = 99.4%

9. REPORT

9.1 Record roller patterns and densities on SCDOT Form 400.02 (Target Density) and
400.11 (In – Place Density – for acceptance).

10. PAYMENT

10.1 The 900 ft control strip section described above will be paid at the average pay for the
daily LPF for this day. Determine the payment using the contract specifications to
calculate Lot Pay Factor for in-place density.